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Abstract—The problem of finite wave propagation in a nonlinearly thermoviscoelastic thin rod whose
viscoelastic properties are temperature dependent is considered. The rod is subjected to mechanical or thermal
time-dependent loading. The coupled equations of motion and heat conduction are based on a constitutive
theory of nonisothermal nonlinear viscoelasticity which is described by single-integral terms only. This theory
is reformulated here for the uniaxial motion of a compressible rubbery material. The solution of the field
equations is obtained by a numerical procedure which is developed for the present case and is able to handle
successfully shock waves whenever they built up in the nonlinear material.

INTRODUCTION

Nonlinear viscoelastic constitutive equations can be described by a polynomial expansion of a
multiple integral expression, see for example Lockett[1] and references cited there. Experimental
determination of the material functions involved in this description requires a large number of tests
which would be prohibitive and impractical especially for significant deviations from infinitesimal
deformations. For this reason approximate single-integral constitutive relations which
incorporate the nonlinear behavior were considered by several investigators[1].

Temperature dependence of nonlinear viscoelastic behavior which is described in terms of
general constitutive functionals was incorporated by Lianis[2] by generalizing the concept of
thermorheologicaily simple behavior to a nonlinear one. Later{3] this was applied to describe the
nonlinear nonisothermal behavior of an incompressible isotropic material. This description is
based on the concept of finite linear viscoelastic theory which contains single-integrals only. Due to
the incompressibility, the material functions in the nonisothermal constitutive relations in [3} differ
from the isothermal relations only in that they are evaluated at the “reduced time”.

Another theory which is applied to nonlinear thermoviscoelastic behavior and contains only
single-integral terms was developed by Schapery [4]. This theory is based on the thermodynamics
of irreversible processes and the single-integral constitutive equations have a form which is very
similar to the Boltzmann superposition integrals of the linear theory of viscoelasticity. Later{S] this
theory was shown to be consistent with the mechanical behavior reported for several metals and
polymeric solids. Also, it was applied to characterize several nonlinear viscoelastic materials{6]
and a nonlinear fiber-reinforced composite{7].

In this paper we employ Schapery theory in order to solve the problem of uniaxial finite
amplitude wave propagation in a nonlinear thermoviscoelastic compressible material. We start by
evaluating a nonlinear thermoelastic uniaxial constitutive relation for a compressible material. This
relation is then employed in order to conmstruct a constitutive equation, for a nonlinear
thermoviscoelastic compressible material, which contains single-integral terms according to
Schapery theory for rubbery polymers which can sustain very high deformations before breaking.
The time-dependent temperature field is governed by a coupled energy equation together with the
associated dissipation function. The energy equation and the dissipation function are expressed in
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726 J. ABouDI and Y. BENVENISTE

[4] in terms of observed and hidden coordinates. For the present uniaxial case they are transformed
and given here in terms of the observed coordinates and temperature only. By adopting the Fourier
law for the heat flux, we are able to formulate the coupled nonlinear equation of motion and heat
conduction equation for the present viscoelastic compressible material, and each equation
contains single-integral terms only. The viscoelastic modulus is described here by a polynome of
exponential series which in the linear range yields the generalized Maxwell model.

In the linear range it is shown that the constitutive relation, heat conduction equation and the
associated dissipation function reduce to those given by Hunter[8] for a thermorheologically
simple solid.

A finite-difference numerical scheme is formulated to the present system of nonlinear coupled
integrodifferential equations. When, due to nonlinearities, a discontinuous solution is developed
(shock wave), an iterative procedure is applied in order to remove the numerical oscillations known
to be present near shocks in numerical solutions. This iterative method was previously applied by
the authors in studying nonlinear elastic wave propagation in elastic[9} and thermoelastic[10]
media and is generalized here and applied to the present nonlinear thermoviscoelastic wave
propagation. In both the finite elastic and thermoelastic cases, which are obtained as special cases
of the present formulation, the proposed numerical scheme reduces basically to those investigated
in [9] and [10] and whose accuracy was checked by comparison with several situations for which
analytical conclusions could be derived.

Results are given for both mechanical and thermal loading of a nonlinear semi-infinite
thermoviscoelastic rod with temperature dependent properties. Other cases of nonlinearly
elastic, viscoelastic, thermoelastic and thermoviscoelastic with temperature independent
properties rod are shown for comparison. Results are also shown for a linear thermoviscoelastic
rod with temperature dependent properties, showing clearly the effect of nonlinearity. Even in
this “linear’’ case there are two sources of nonlinearity due to the dependence of the material
properties on the unknown temperature, and the appearance of the quadratic dissipation
function.

Distortions of the simple wave solution obtained from a smoothly decreasing input in the
nonlinear elastic case, due to the various mechanisms invoived are shown. Also, the behavior of a
propagating shock wave which is built up from a smoothly increasing input is exhibited in the
various cases considered.

It is hoped that the present proposed method of solution will be employed in related problems
whenever a complete solution is required.

A UNIAXIAL CONSTITUTIVE EQUATION FOR A COMPRESSIBLE
THERMOELASTIC MATERIAL
In order to construct a uniaxial constitutive equation for a nonlinear thermoviscoelastic
material we need first to derive the correspondent thermoelastic one. We shall adopt the
quadratic material for which the internal energy is expanded as far as the second order terms of
the strain components and the entropy S. Following Bland [11] notation the specific internal energy
e is given for this material by

ey S) = ToS +%le+£J2—KJIS +1s? )

where A, u are the isentropic Lame’ constants, T, p are the temperature and density in the
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undeformed state and K, n are material constants. In (1)
J 1= Y Jz = YiYij (2)

where vy, are the components of the Cauchy-Green strain tensor.
The temperature T is derived from e according to

_de
T_as 3

so that for the quadratic material the following relation between the entropy and temperature is
obtained
nS=T-To+ K. @

In order to derive the required uniaxial stress-strain-temperature relation we impose the same
three assumptions of Valanis and Sun{12] who constructed the uniaxial stress-strain relation for an
incompressible material. These assumptions are: (a) Planes before deformation remain planes
after deformation. (b) When deformation occurs, sections change size but not shape. {c) A change
in size is gradual.

Let I,, I, I, denote the principle invariants of the Cauchy-Green tensor

_ o 0

Cu=3x %

3

where x; is the current configuration described by the original configuration X,. The tensor Cj is
related to vy, according to

vi = (Cy — 84)I2 (6

where 3, is the Kronecker delta. Then the previous three assumptions yield the following
expressions for I, L, I
I] = 1\12 + /\22 + A;Z
Iz = Alezz + A121\32 + Azzl\sz (7)
L= l\lzl\zzA32
with Az = Aa,

A= % &z (1 is not summed) ®

and X, is the position in the uniaxial direction whereas X,, X; define the positions in the
thickness directions.
Ji and J; in (1) are related to I, and I. as follows
L=(L-3)2
L=("-2I,-2L,+3)/4

®
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The first Piola-Kirchhoff stress tensor is given by

R

where u; are the displacement components.
In a uniaxial situation the principal stress components L,,, L3; must vanish. This yields after
some lengthy manipulations the following relation between A. and A,

2 2
A= [3" Ty 5 K To)+o~5(£~—’3>,\f]/<ﬁ—ﬂ‘——K—). (11)
2p n n P p n

The isothermal Lame’ constants A;, u, are related to the isentropic ones by [13]

/\1:/\—pK2/11} (12)
pr = ’
Furthermore, the coefficient of linear expansion is related to Ar, pr, K, , p by

T RO+ 2m) (13)

Hence after some lengthy manipulations in which the dependence of L, on A- is eliminated using
(11) we obtain the following expression for the uniaxial stress component

Lu=o0=E.(1+15ux+0-5u)ux — aE.(1+ ux)(T ~ To) (14)
where
E.= i (3Ar + 2un) /(A + ur)

is the Young modulus and u,x = (du./6X,)

A UNJAXIAL CONSTITUTIVE EQUATION FOR A NONLINEAR
THERMOVISCOELASTIC MATERIAL

A uniaxial stress-strain-temperature equation for a nonlinear thermoviscoelastic material is
given by Schapery[4]. This equation, which is an extension of a linear constitutive equation to
noniinear behavior, is based on the theory of the thermodynamics of irreversible processes. By
assuming a certain simple form for the free energy and entropy production, Schapery derived the
following constitutive equation containing only single integral terms

Q=351 [ (BU-0)-ElEadr - [ Bw-v)Ziar a9

where ¢, is the single observed generalized coordinate chosen in this case as the displacement
gradient g, = u,x so that Q, which is the single generalized force will be the uniaxial stress o . F.
is the equilibrium free energy for which T = T,, E (i) is the relaxation function, E, = E() is the
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elastic modulus corresponding to the equilibrium state and
6 = a,(T - To)lar. (16)

In (15), (16) ar(q:), a.(q.) are material functions which are equal to unity when ¢q; =0.
¥ = ¢ (t) is the strain-temperature reduced time which is related to the time ¢ through

wexn=[ L an

with a.r = a.r(q:, T) being the thermomechanical shift factor and ¢’ = ¢(X, t").

For rubbery polymers, which can sustain very high strains before breaking, the shift factor is in
general insensitive to the stress level whereas it depends very strongly on the temperature, see [1]
and [5]. Also for those polymers the following relation exists[5]

dF.
3q1

= E.arq:. (18)

In the special case of a nonlinear thermoelastic material (15) reduces to

oF.
3q,

o =-——aE(T - T,).

Comparing the above equation with (14) for the uniaxial constitutive equation of the quadratic
material we have

= . . 2
ar=1+1 Su,x +0 Su,x}‘ (19)

as = 1+ U,x
Accordingly, we obtain the following nonlinear uniaxial thermoviscoelastic constitutive equation

d

O'(X,t)=E¢az-u,x+apj‘ [E(I,[I—ll/')—Ee]Wu,x dt’
- (20)
a

:9?0(”

t
~aa [ E@-w)
with the material functions ar, as given by (19). The linear form of (20) is recovered when
Ar = 4ds = 1.

In the isothermal case, equation (20) reduces to the uniaxial equation of Vogt and
Schapery[14]. In reference [14] the problem of shock waves in viscoelastic rod was treated by
employing the wave-front expansion method, and the complete solution was obtained
numerically by Benveniste and Aboudi[15].

The relaxation function E(y) is chosen in this paper in the form of exponential series

N+1

E@)=E:+ 23:2 E. exp(-¢/t,) @n

1SS Vol. 11, No. 6—E
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with E(¢) =0 for ¢ <0, E, = E., E, are constants and f, > 0 being relaxation constants. In the
linear range (21) yields the generalized Maxwell model describing the viscoelastic behavior.
Substituting (21) in (20), the following relation is obtained

N+1

o(X,t)= ElaFu,X+aF2 E. exp (- d:/t,)[h,-ah 1- aE:a.(T - To) (22)
where
(1)
h(X )= exp W’ /t,) a7 b dt’ 23)
and
@ 4
(X, ) = L expW'it) L dr, 24)

The uniaxial equation of motion can be written in the form

PUy = Eilaru,xx + aF,Xu,X] - aEl[asT,x + as,x(T - To)]

N+1 5] a

+an E exp( lll/t2)[h /tr+ h )rlllsX/tr

* N+1 @
—a(h,./t + k- ,.p,x/t,)]+an 2 E, exp (- ¢/t,)[h —ah,] (25
with .
h.(X, t)= exp W' b x— at' u,x dt’ (26)
(X b= exp Wi 2 dt @7
0= [ exo @i far (9)
BAX 1) = exp(dl 1ty 2 at, fix dt'. (29)

THE ENERGY EQUATION FOR THE UNIAXIAL MOTION
The energy equation in terms of the generalized coordinates is given by [4]

N+1
‘;—g pe 2 §£+Toa, > B3 g, 2 —2aFD (30)

where H is the amount of heat gained by the material and ¢, is the specific heat at constant
volume. In (30) the q; are the N +1 generalized coordinates and are composed in the present
uniaxial case of one observed coordinate and N hidden coordinates ga, . . . , gn+1. B are material
constants which appear in the corresponding thermodynamic relations of the linear case and D is
the dissipation function given by

N

’_1 aqiaq;
D_Z;,Z V30 g (31
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with by = b, being material constants which like B; appear in the thermodynamic linear relations.

In order to formulate the energy equation (30) and the associate dissipation function (31) in
terms of the observed coordinate g, = u,x and temperature, we have to express the hidden
coordinates in terms of the observed coordinates and temperature. Such a relation between the
observed and hidden coordinates is given by Fung[16] for the linear isothermal viscoelastic case
and is extended here to the present nonlinear thermoviscoelastic case. For this purpose let us
employ the equation of evolution[4]

N+1
E [aqu + bu ] Q( + Bio (i=1,...,N+1) (32)
j=1 (wl
where a; = a; are material constants like b; and 8;, and a; =0 for j = LN+1L.In(32)
éx = [QJ + ar; Gy —gg{l/ﬂp (33
q:
with Q, =0 for r = ., N+1,and Q. is the observed generalized force which turns out to be

the uniaxial stress o for the present choice of ¢: =
Following Fung{16] letus define B,, (r,5 =2,..., N + 1) to be a normalizing matrix such that

2 BubaBu=8x  (k1=2,...,N+1) (34)

and
Z BsraslB(k = }Lrsrk (35)

where u, are constants,
It follows after some lengthy manipulations which involve the application of Laplace
transformation with respect to  to (32), employing (34) and (35) and inverting back, that

—‘3%’ = 2 [P B, a“‘] + 2 [Bos(@:R; + 1sS:)] (36)
and
Q= a a2 (b11 > V) Biaef + ar 3 (wV.R, + M.S.) @37
where
P, =3 Bub, b.=by (38)
o, = 2 B.b.u. (39)
= 2 B..8. (40)

1}

R, =exp (—u.¥) hr}

41
S, = exp (~u) F, @0
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Vr = 2 bsBsr frb( (42)
Ls
Mr = Z errsns— (43)

Equation (36) is the required expressions for the hidden coordinates g, in terms of the observed
coordinate ¢; and temperature, whereas equation (37) yields a constitutive relation for the
generalized force Q= o in terms of the observed coordinate g, = u,x and temperature.

By comparing (37) with (15) and E(y) given by (21) we readily obtain

~Sv.=0 (#4)
B, = aE, (45)

Hor V.= Er (46)

w =11, @7)

M, = —aE. (48)

Moreover, these relations enable us also to express the dissipation function (31) in terms of the
observed coordinate and temperature. Thus we can write after some expansions

D=3 kZ b BoiBalwRiR: + eSS, + 20emRiS: ] 49)
Leos

Employing (45), (46), (49) yields after some operations

an

b= % Ea[R - oS, (50)
which is the required expression for the dissipation function.

As to the energy equation (30), we can express it in terms of the observed coordinate g, by
separating the observed and hidden coordinates yielding

dH ar 960 3 &
5 =P g Toap 0+ Toa 3 B ~2aeD (51)

Using the expression for q./dy given by (36) and employing (45), (46) we obtain

oH_  ar 06 LA
oy~ Peq, g T TowErag,
N+1 a .
+ aToa; Z E [ Z}' w-R, + ap,,S,] —2arD. (52)

With this equation we incorporate the Fourier law

H=—-kTx (53)
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where k is the heat conduction coefficient (assumed constant), yielding the final form

N+1
KTxx = pc,, 9,,+aToa,u,xf 2 E +“‘°‘T° 2 E, exp (-t h, - holjt,~2asDlax  (54)
and
N41
b= 1z—exp( ~2pit)f, - o, T (55)

The special case of a linear thermoviscoelastic material, whose viscoelastic properties are still
temperature dependent, is obtained by setting a, = ar = | in the constitutive equation (22), the
energy equation (54) and the dissipation function (55). Indeed, it can be easily checked that (22)
reduces to the constitutive relation given by Hunter[8]. The energy equation in the linear case is
given by Hunter but it is given in [8] in terms of the specific heat at constant pressure ¢, rather than
¢, as in the present formulation. By employing the relation between ¢, and ¢, for the uniaxial case,
i.e.

¢ = ¢ +a’E(0)Tolp (56)

we can readily obtain from (54) with ar = a, = 1 the energy equation given by Hunter{8]. As to
the dissipation function (55), it can be also transformed and shown to be identical with that given
in {8].

We note that even with ar = a, = 1, the coupled “linear” thermoviscoelastic case in which the
temperature is transient as well as nonuniform, there are two sources of nonlinearity: (1) The
temperature dependence of the viscoelastic modulus through their explicit dependence on the
reduced time ¢ (X, t) which depends on the unknown temperature field. (2) The appearance of the
dissipation function which is quadratic in the displacement gradient, in the energy equation.

FINITE-DIFFERENCE FORMULATION
In this section we present a finite-difference method of solution to the equation of motion (25),
the energy equation (54) and the associated dissipation function (55).
We start by transforming these equations to a nondimensional form by introducing the
nondimensional variables for the length, time and temperature

& =pc.coXik
7= pe.cotlk &)
8=(T—-Ty/T,
where
co’ = E(0)/p. (58)

This yields the following form of the equation of motion

N+1

Ui = GilArUsee + AreUsel — ¥GilAb,e + A 81+ Ar 2 G, exp (- ¢ff,)[H [+ H. - H,‘;;,gi-r

- (5) N+1

—y(Hr+ H - H,¢,sln)}+ApeEGr exp(~d/m)H —yH]  (59)
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where

y=aTe, G.=E.lpco’, 7 =pc.cot Ik,

¢(£, 7) is the nondimensional reduced time

(1) = j " drlx(Use8) dr (60)

and y is the nondimensional thermomechanical shift factor.
U is related to u as € to X in (57), Ar, A, are the same expressions as dr, d, but with u,x

()] (3]
replaced by U, and H.(¢, 1) (I = 1,.. ., 6) are of the same form as h.(X, t)in (23-24), (26-29) but
withu, X, t,t', 0, ', § replaced respectively with U, £, 7, 7', ¢, ¢', ® where © = A,8/Ar the energy
equation (54) takes the form

N+1

SA, S8A, @ _
= b= 50(52) ~2X U+ 20 5, Goep(-9InH. ~yHn+D (6D

where

D 8AF i G, exp (‘2¢/fr)[H 7}?,]21'7, (62)

and & is the thermomechanical coupling constant
8 = a’TLE(0)/pc.. (63)

The numerical formulation is evaluated by introducing the spatial increment A¢ and temporal
increment Ar, such that a function f(£, 7) is discretized in the form f" = f(iA¢ nAr). The
finite-difference scheme of the equation of motion (59) can be written in the form

l]i"+l - 2Ui" — []i"ml + (AT)ZL [l]in) oi"] (64)

where n =2,3,... and for the region £ =0, i =0,1,..., and L is a spatial difference operator
which is obtamed by discretizing the right hand side of (59) and approximating U,;, U, 6; with
their corresponding central difference versions which are correct up to second order in A¢. Also,

4

L will involve the expressions 8, ¢.", (¢,¢)" and (I}’r‘; (r=2,...,N+landl=1,...,6)and the
computation of these expressions at every time step will be explained in the sequel.

According to (64) it is possible to compute step by step the displacements U”*" at the time
level v+ Ar when all other quantities are known at times 7 and 7 —Ar for all i =0,1,2,....

For the energy equation (61) an implicit finite-difference scheme will be employed in order to
prevent the need of considerably small time increments Ar known to be necessary when
approximating a linear parabolic heat equation by a simple explicit method. We choose as in [10]
the Crank-Nicolson implicit scheme which yields for (61) the following system of algebraic
equations at every time step

~ €81 + Qe+ DO — €875 = (071 + 010+ (1-2€)6" + Amp/ (65)



Uniaxial wave propagation 735

where
pr =230 ——A or + 2 A ) H- yHAIn +DE (66)
1+0 5[}1 ‘Y I r=2
_ s A N+1 2
D" = = = > G, exp(-2¢" /Tr)[Hﬂ YH Il ©7)
r=2
and

€ =0-5 Ar/(A¢).

In (65-67) U7, U are the central difference approximations of U,; U, respectively and Ar, A,
are the same expressions in U" as Ar and A, in terms of U,

Equation (66) consists a system of M algebraic equations in the unknowns 6" (i=1,...,
M) where M = §,/A¢ with £, being a point at which the values of the displacements and
temperatures have no influence for a preassigned degree of accuracy on their values at the range
0< £ < ¢ for a given range of space and time.

@)
The quantities &', (¢,e)""", Hx"" are computed at every time step by employing the
trapezoidal integration rule. For example

(I}}:‘l‘-ﬂ ~ (1):1+0‘5[exp (¢i"+1/7') + exp (¢i" /Tr)] . (l-—]in+1 _ lji"). (68)

The previous schemes are associated with initial conditions and boundary conditions (at £ = 0).
These schemes were found satisfactory and accurate whenever they applied to problems
possessing a continuous solution. On the other hand when they are applied to a problem in
which discontinuities are encountered, such as shock waves, numerical oscillations which are
quite strong are formed which may in time distort the true solution, see also [9] for more detailed
discussion.

In order to remove these oscillations an iteration process, previously employed in [9] and [10],
is generalized here and applied to the explicit scheme (64) in the form

mn+l,m - zu-in - un—l +(AT)2{WSL[un+1,m—1’ oin+1.m-l]+ sz[un, 01"]
+ WxL[[].'"_.l, 01"_1]}/(w1 + wa+ W3)

(69)

n+10

where m is the number of the iteration m =1,2,. .., w; are weight numbers and U"*"°, 6 are
defined to be equal to U™, 6"*" given by (64), (65) respectively. The quantities 6,"*" "', &,

(o)™, H','{’""‘ are computed by using (65), (68), etc. whenever U"*"™ have been calculated
by (69) so that everything is known for the next iteration m + 1.

Actual computations with (69) show that one iteration only (m =1) removes almost the
oscillations near the shock. Accordingly, all the results given in this paper are obtained by
applying one iteration only.

For a nonlinear thermoelastic half-space the present numerical schemes reduce basically to
those described in [10]. In [10] the numerical results were shown to yield accurate results by
comparison with several analytic conclusions which could be drawn under special boundary
conditions.
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RESULTS
Consider a thermoviscoelastic semi-infinite rod 0 < ¢ < « subjected to the following boundary
conditions at £ =0
(a) Mechanical loading

U» = €o,
§=gf(7)} até=0 (70)
(b) Thermal loading
U,g =0 .
6= eof(f)} atg=0 an

where e, 6, are constants and f{r) is a smooth input function which rises from zeroat =0 up to
1 at 7 =24, such that 2A determines the rise time of the input (see [9]). The rod is assumed to be
initially at rest prior to the application of the loading.

The following cases will be considered:
(1) Nonlinear elastic rod

Gi=1, G. =0 (rz2.
{2) Nonlinear viscoelastic rod
Gi=G:=1, G =0 (rz3), m=1
(3) Nonlinear thermoelastic rod
Gi=1, G =0 (r=2.
(4) Nonlinear thermoviscoelastic rod with temperature independent properties
Gi=G:=3, G =0 (rz3), m=1, y=L

{5) Nonlinear thermoviscoelastic rod with temperature dependent properties. The coefficients in
this case are as given in case (4) but with the shift function

x(T)=exp [T — T)/(100+ T - To)], To=273K.

This is the well known so called WLF shift function which applied for wide variety of polymers
above their glass transition temperature for which the rubberlike behavior is observed.

The results given herein were obtained with the spatial increment A& = 0-01, rise time input
2A =02, thermomechanical coupling 8 =0-1 and y = 0-1. For every case the corresponding
linear response can be obtained by setting ar = a, = 1.

(a) Mechanical loading

In Fig. 1 the displacement gradients U,; and the temperature 6 versus the time r are shown
for the boundary conditions (70) of mechanical loading with e, = —0-25 at station ¢ = (-3 for
three cases of nonlinearly elastic, viscoelastic and thermoelastic rod. In the elastic case it can be
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Fig. 1. Mechanical negative loading. Plot of the displacement gradients and temperature versus time at
station £ = 0-3, for a nonlinearly elastic ( ), viscoelastic (- ++ + ++ ) and thermoelastic (—-—~— Yrod.

shown[17] that this type of a smooth monotonically decreasing from zero loading yields for the
present material a simple wave solution given by

U,e(f, t) = eof('r - gic), <0 (72)
where c(U,,) is the velocity of the acceleration waves given by
c(U,)=[1-5U2% +3U, + 11" 73

subject to the condition that U, > — 1 and the hyperbolicity condition ¢ > 0. As in [9] the simple
wave solution (72) provides an analytical check to the numerical scheme, and in Fig. 1 the
analytical and numerical solutions are up to the scale of the plot indistinguishable.

The presence of the separate viscoelastic and thermoelastic effects can be well observed in
the Fig. 1 by comparing the elastic solution (72) with the pertinent curves, showing clearly the
distorting effects on the simple wave solution caused by those mechanisms, The dissipation,
attenuation and the excited temperature due to the thermomechanical coupling are fairly weak
for the present choice of the coupling coefficient.

In Fig. 2 the combined thermal and viscoelastic effects are shown for a thermoviscoelastic rod
whose viscoelastic properties are temperature dependent as against the case of thermal
independent properties. Here too the excited temperature field is fairly small. Nevertheless, the
effect of this dependence on the temperature is well observed especially in the plot of the
displacement gradient due to the strong dependence of the shift factor on the temperature.

The linear thermoviscoelastic case with temperature dependent properties is also reproduced
exhibiting a remarkable deviation from the nonlinear one. Indeed it is clearly seen that the
displacement gradient and temperature are larger and less gradual in the linear case. This
spreading of the curves is not unexpected since nonlinearity causes the shape of the present type
of loading to spread as the disturbance propagates within the medium.

A completely different type of effects are obtained when applying the mechanical loading (70)
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Fig. 2. Mechanical negative loading. Plot of the displacement gradients and temperatures versus time at

station ¢ = 0-3, for a nonlinearly thermoviscoelastic rod with temperature dependent properties ( Y,

temperature independent properties (——— ) and for a linearly thermoviscoelastic rod with temperature
dependent properties (- - - - - - ).
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Fig. 3. Same as Fig. 1 but for a mechanical positive loading and at station ¢ = 0-5.

but with e,>0. In this case the smoothly rising input applied on the boundary builts up into a
propagating shock within the material. In Fig. 3 the displacement gradients and temperature in the
nonlinearly elastic, viscoelastic and thermoelastic cases are shown for e, = 0-25 at station £ = 0-5
where the shock is present.

For the nonlinear elastic rod, when the medium is previously undeformed, the velocity of the

shock is given by

V = [Ar(U*e)]" (74)
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where UX is the jump in U,¢ across the shock, and it is in excellent agreement with the arrival
time of the shock obtained by the numerical solution.

In the viscoelastic case the shock wave is attenuated, whereas the thermoelastic case yields a
less attenuated shock wave (for the present choice of the coupling constant). Note that in the
latter case the temperature variation is continuous so that the shock wave is isothermal as it can
be verified[11] for the present choice of the heat flux equation (53).

In Fig. 4 the combined viscoelastic and thermal effects are shown fort the same type of
loading at the same station. Here too a comparison between the cases of temperature dependent
and independent properties is exhibited showing an increasing in attenuation in the first case as

020

0.0}

000 0.25 050 ors 100 000 025 050 Q75 100
— 7 —T

Fig. 4. Same as Fig. 2 but for a mechanical positive loading and at station £ = 0-5.

well as different behavior in both cases for larger times after the arrival of the shock. The
response of a linear thermoviscoelastic rod (with temperature dependent properties) is also
shown exhibiting very clearly the absence of the shock and yielding instead a smooth solution.
Thus the general feature is preserved as in the purely elastic solution: for a monotonically input
decreasing from zero, the nonlinearity causes a spreading to the propagating disturbance within
the material as compared to the linear response, whereas for a monotonically increasing input
from zero, the nonlinearity causes shock formation at a certain location and a shock wave
propagates within the material as contrasted to the smooth propagating disturbance in the linear
case.

(b) Thermal loading

In Fig. 5 the displacement gradient and temperatures are shown for the thermal loading
conditions (71) with 6, = 0-1 at station £ = 0-3 within the rod. In the present case due to the value
of the thermomechanical coupling constant chosen, relatively low values of displacement
gradients are obtained and the main effect of the temperature field is to serve as an intrinsic time
scale of the material at which the viscoelastic modulus is evaluated. This effect is exhibited in Fig.
5 by the two curves which show the influence of the temperature dependent and independent
properties on the displacement gradient. It is well seen that this dependence on the relatively high
positive temperature variations cause severe attenuation to the propagating mechanical
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Fig. 5. Thermal loading. Plot of the displacement gradients and temperatures versus time at station £ = 03,
for a nonlinearly thermoviscoelastic rod with temperature dependent properties ( ) and temperature
independent properties (——-— ).

disturbance. The temperature variations on the other hand coincide in both cases due to the
relatively small excited mechanical disturbances.

By applying the same thermal loading (71) but with 6, = —0-1 (not shown in the Figure) we
obtain that the temperature dependent properties case yields higher values for the mechanical
disturbances as compared with the temperature independent case. This is expected since the
negative values of the temperature field in the present situation produce an intrinsic time scale
such that the temperature dependent uniaxial modulus is evaluated near its initial value at which
it attains its maximum.
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